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LOCALIZED FAMILIES OF BENDING WAVES IN
A NON-CIRCULAR CYLINDRICAL SHELL
WITH SLOPING EDGES7
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(Received 18 July 1994)

The initial-boundary-value problem for the equations of shallow shells describing the motion of a non-circular cylindrical shell
is considered. The shell edges are given by not necessarily plane curves. The conditions of a joint support or a rigid clamp are
considered as boundary conditions. It is assumed that the initial displacements and velocities of the points of the median surface
of the shell are functions which decrease rapidly away from some generatrix. In the case when the shell edges lie in planes
perpendicular to the generatrix, the solution of the problem can be constructed as an expansion in beam functions
along the generatrix. The expansion enabies the original initial boundary-value problem to be reduced to an initial problem,
the solution of which can be constructed [1] by Maslov’s method [2]. A complex WKB procedure is proposed, which is suitable
for non-circular cylindrical shells with sloping edges. An asymptotic solution of the equations of motion is constructed
by superimposing localized families (wave packets) of flexural waves travelling in a circular direction. A qualitative analysis of
the solutions is carried cut. As an example wave forms of motion of a cylindrical shell of oblique section are considered. Copyright
© 1996 Elsevier Scienc: Ltd.

1. FORMULATION OF THE PROBLEM

On the median surface of a shell of thickness 4 we introduce an orthogonal system of coordinates s, o,
where s IS the long)tudmal coordinate and ¢ is a coordinate on the directrix chosen in such a way that
do® = R*(ds* + d¢?) is the first quadratic form of the surface. The radius of curvature is R, = Rik(ep).
Here R is a characteristic dimension of the median surface. Suppose that the shell is bounded by two
edges and is not necessarily closed in the direction of @

@) <s=5(Q), {1 <P

The functions k(¢) and s,() are assumed to be infinitely differentiable, with 3"k/d@™, d™s;/0¢™ ~ 1 as
e->0(m=12..)

Assuming that the waves vary rapidly with respect to the circular coordinate @, we use the following
system of equations [3] written in dimensionless form

e*APW + k( )-?Ln’ Gl 0, €*A’F-k( )L 0 (1.1
MR AT '
A= i el = L =t
as? " og?’ 12RE(1-v?) T
2
w=et® poe b o sRP
hE E

where W. is the normal deflection, F. is the stress function, t. is the time, p is the density of the material,
0 < e is a natural small parameter, E and v are Young’s modulus and Poisson’s ratio, and T. is the
characteristic time.

On the shell edges s = 5,(9), s = 55(¢) we consider one of two groups of boundary conditions, namely,
the joint support. group or the rigid clamp group. Each of these groups includes six versions of the
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boundary conditions [4, 5]. The stress state of the shell consists of the basic stress state and the edge-
effect integrals [6]. To study the basic stress state on each edge one only needs to satisfy two basic
conditions. Apart from terms of order € these conditions have the form [4]

W=0W/ast=0, W=aW/As=0 (1.2)

for the joint support and rigid clamp groups, respectively.
Consider the initial conditions

Wi, _o= W, (5,0.8)0y, Wl_o=ie"'V;(s5,0,£)P, (1.3)
q’o = (Do((p. €) = Cxp{ie_] (ao(p + %bo(pz )}, Im bo >0

where ag(ag # 0) is a real number and W§, V'§ are complex-valued functions such that

0"Ws /3s™, d™Vy /ds™ ~e™™ whene—0 (14)
m=12,..; 0sy<3/4;, O0<sa<s}y

having a finite number of oscillations with variability of order € in the dnrectnon of . Conditions (1.3)
specify an initial wave packet on the shell surface with variability of order £ in the direction of ¢ localized
in the neighbourhood of the generatrix ¢ = 0.

2. METHOD OF SOLUTION

Consider the equation
d*zlds* - Az =0 2.1)

We will denote by zy(s, 9), 25(s, @), . . . an infinite system of eigenfunctions of the boundary-value problem
(1.2), (2.1). Suppose that W3, V' satisfy one version of the boundary conditions (1.2). Then for any
9 € [¢1, 92}, Wand V§canbe expanded in terms of the eigenfunctions z,(s, @) into uniformly convergent
series in the section [@, @] [7]

- (@)
Wo = T W,o(@.8)2,(s.9), Wyo= [ Woz,ds (2:2)
n=1 x|(¢)

oo 52(9)
V(; = 2 VnO(‘p'e)zn (S, (P). VnO = I VO ans
a=l s (@)

Taking (1.4) and (2 2) into account, in practical computations 1t lS possible to restrict oneself to
a finite number N ~ €77 of terms. Let W,g, Vo be polynomials of £ 2¢ whose coefficients are regular
functions of €. This assumption involves the presence of a finite number of oscillations in the amplitude
of the initial wave packet [2]. Then W, V,¢ can be represented by the series

Wao= I 0@ Vi = 5 emul@n (=t
m=0 m=0
where wd,,, v2,, are polynomials of degree M,,,,, with (in general) complex coefficients. We take the Taylor
expansion of z,
2% 9z,
z,=12} +Ze”2§ -2, i)
r=1 aw a‘p a(p @:0

Following [1] and taking into account that the original system is linear, we shall seek a solution of
problem (1.1)~(1.3), (2.2) in the form

zf,’ =z,(s,0),
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W=3 W, F=2F (23)

where W, F, (n = 1, 2,..., N) are the required functions, which at time ¢ are localized in the neigh-
bourhood of a generatrix @ = g,(f) and satisfy the initial conditions

Wioo= Y "W 2, Wl o=ie! Y e™%0 2, (24)
m=0 0

where the functions z, = z,(s, ) are represented by the above Taylor series.
The pair W,, F, will be called the nth wave packet with centre at ¢ = q,,(t) Here g,(?) is a twice
differentiable functlon such that

qn(o) =0 (2.5)
In (1.1) we change to a new system of coordinates connected with centre g,(f) using the formula
9=g,(0+e%E, (26)

As a result, we obtain the system of equations

a'w o'W, o'w,  9%F W, *W,
2 3 4 F . n 3/2
€ +2¢ +€ LY +€ ~2¢ —L 4+
ae,‘ 3295 2 os* os? or? 3 3
W 2. 9W,
+€4? —e¥%, =2 =0 27
g ag,
o*F, 3‘F, 'F,  ’W
2 n 3 4 n n
€ +2¢e +€ -k =0
a§4 agfa 2 asl asz
describing the behaviour of the nth wave packet.
We shall seek a solution of (2.7) with initial conditions (2.4) in the form
W,=W,®, F,=Fo, (28)

W= Y e™w (58,0, F = T € (5.5

m=0 m=0

1
o, = exp{ [e" [ @ (tydt+e%p,()E, + % bn(r)éi]}
0

where @, p,, b, are twice differentiable with respect to ¢, Im b,(t) > 0 for any t > 0, and w,,,, fm
are polynomials in &, Here ®,(f) is the instantaneous frequency of shell vibrations in the
neighbourhood of the centre @ = g,(t), p,(t) determines the variability in the direction of v, and
b,(t) characterizes the rate of decay of the wave amplitude as the distance from the centre ¢ = g,(¢)
increases.

Note that when g, = 0 and ,, p,, b, are constants, expansions of the form (2.8) were constructed
(8, 9] for the equations governing the stablllty and characteristic vibrations of shells

We substitute (2.8) into (2.7) and expand k(¢) in a Taylor series in powers of €%, in the neighbour-
hood of the stationary point @ = g,(t). Equating the coefficients of like powers of €' to zero and
eliminating f,,,,, we obtain the sequence of differential equations

2‘. nWam—j =0, m=0,1,2,... (2.9)

from which to determine ®,, g,,, Pp, bns Wam. Here
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k’[q,.(t)] a*

o=y 3" (P2 (1) - 10, (1) - 4, ()P, (D)}
- . s a
Llll = (anp + Lq + pul«a)§" - le Z (2.10)

L= ( wLop +2b, Loy + Loy + pr Ly +2 pyLusg +2 paby Ly + b, Ly E2 +

+a,,o —_— a’l3

a2 E a2
aén R,y

"0 = '-EL , a,,l = —i(b”Lpp + qu + p"L“V ), anz = —’L(l)
4kk’ 3¢ .
a3 =- t( b,,L”,-f- (DL‘m-#- lm, a4-4-q’|p”)

The subscripts p, q, o in (2.10) and below denote differentiation with respect to the corresponding

variables.
The functions f,,, are found one after another from the mhomogeneous equations and can be

expressed in terms of fyg, fy1, - - - » fam-1. In particular, f,o = k(g,)px'0"Wne/os>.
Substituting (2.8) into (1.2) we obtain a sequence of boundary conditions for w,,,,, with s = s;[g,(1)].
For example, in the case of a joint support we obtain

2
W, =0, aa:;o =0 (2.11)
, Mo Pw g %0 (2.12)
Wy +§ns_ 3s =0, aS +§ asr =0 )
w +§ s aw,,, 4+ é u az“’IIQ +S'2 aswno =0 (2.13)
n2 os n as as2

Ila n ’ 84 n
—"5"1' 8as ‘—31L+ 52[ w°+ ’ a:4°]=°

3. INTEGRATION OF EQUATIONS (2.9)

Consider the boundary-value problem (2.9), (2.11) which arises in the null approximation (m = 0).
We shall seek its solution in the form

Wao = Blo(gn't)zn [S, qn(')] (3.1)
where Py(E,, ) is a polynomial of argument &,. Substituting (3.1) into (2.9) for m = 0 we obtain

0, (8) = 4 (DPy (O F H,[pa (1,4, (1))
H, (Pas8) = 1P} + My (2,)K2(g,) P2 V5 (3.2)

where H,(p,, q,) is the Hamilton function and A,,[g,(?)] is an eigenvalue of the boundary-value problem
(2.1), (2.11) for s = s;jq.(D).

In the first approximation (m = 1) we have the boundary-value problem (2.9), (2.12) for w,,;. We
shall seek a solution of the latter in the form
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wyy = P8, 0)2,[5,4, (014 WD (5,E,.0) (33)
where P,,; is a polynomial of argument &, and w is a partial solution of (2.9) for m = 1. The equality

T 2y (LoWni + Ly Pro2,)ds =0 (34)
5

serves as a condition for the existence of w,,. It is a differential equation in P,,. For the latter to have
a solution in the form of a polynomial of argument &, it is necessary that p,(¢), 4,(t) should satisfy
identically the Hamilton system

qn = Hp' pn = —H (35)

Let p,(1), g.(t) be a solution of (3 5) with initial conditions p,(0) = aq, q,,(O) 0. Then w,,l = E,PriZg
where z, = dz,/dq,. In this approximation the polynomials P,q, P,; remain undefined.

Considered (2.9) for m = 2 with boundary conditions (2.13). Taking (3.2) and (3.5) into account, the
condition for a solution of this problem to exist leads to the equation

(82D, ~2Dy )P,y =0 (3.6)
for P,g. Here

D, =b, +H,,b? +2H, b, + H,,

)
D{: =an0 _f+aul§n a§ +d,, +an3

L
Gy ()= H,,. an(®)=i(b,H,, +H,y), ayy=i
ay3 (1) =in;' (2H,) ' (H,H,,b, - &, - 2H,H, — 4\, (4,)k(g,)k*(9,)P;° +G,p, +

+T (Lpz, + Loz, )z,ds, M, (1) = YZfds

For (3.6) to have a solution in the form of a polynomial it is necessary that b,(f) be a solution of the
Riccati equation

b, +Hyb? +2H, b, + H,, =0 (3.7)
Let b,(¢) be a solution of (3.7) that satisfies the initial condition 5,(0) = bg. It can be proved

{10, p. 104] that if Im by > 0, then 0 < Im b,(¢) < +c= in any finite interval 0 <t < T.
Using (3.7), Eq. (3.6) takes the form D¢, P,y = 0. Any polynomial

M
FoGnt)= 3 Au (s (3.8)

of degree M with coefficients

A () =d, Voo (1), Ay (1)=d,'¥, (1)

Ay (8) = v,,(r)[d.,—w r+2)M - r+1)j—~°ﬂi--_'+2‘_’)dx
nz(t) r(t)

‘l’..,'(t)=cxp{ M= )“"'z(('t))*“"’(') dt} (39)

r=2,3..M; j=0,1,....M
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is a solution of this equation. Here d,; are arbitrary complex numbers, which can be determined from
the initial conditions of the problem.

The function W, = [w,g + O(e"*)]®, found from the first three approximations is the leading term
in the asymptotic expansion of the solution (2.8) and satisfies the original boundary conditions (1.2)
apart from terms O(e"?). To determine the correction €™, in (2.8) for m = 1 one must consider the
corresponding boundary-value problem in the (m + 2)nd approximation. The existence of a solution
of the latter leads to the inhomogeneous differential equation D¢, P,,, = P* for the polynomial P,,,(&,,
t). Note that the above procedure for constructing the polynomials w,,, is no longer valid for m = 4
because the correction introduced by the boundary-value problem into the general solution (2.8) at
the sixth step is of order O(e?) at the shell edges, which is the same as the error of the original boundary
conditions (1.2).

4. DETERMINATION OF THE CONSTANTS d,;

Taking (3.2) into account, we denote by p}, g5, 0%, b3, 23, P35, w), the positive and negative
branches of the functions found above, corresponding to the Hamiltonians H, and —H,,. Here z;, =
z,[s, ¢5(0)] Let £ = £ - ¢Z(t)]. Then PZ, are polynomials of argument &% containing the
undetermined constants a,fj. We consider the functions

W,=W'+W . F =F+F (4.1)
Wi =[wh + 0", FE=[f%+0(e)0t

where the plus and minus superscripts indicate that the computations are carried out for the positive
and negative branches, respectively. By the above construction, functions (4.1) satisfy Eqs (2.7) in the
leading approximation. To determine the constants d; appearing in W, and F,, we substitute (4.1) into
initial conditions (2.4) and use the equality &% = { and the identity z5 = 2%, which hold at¢ = 0. As a
result, we obtain the system of equations

U,?o (9]
H,

1
”n*':-o=5[w3o<i>¢———]. H, = H,(a5,0) (4.2)
from which to determine d;;. From (4.2) it follows that the polynomials =0 have degree M = M.

5. ANALYSIS OF THE SOLUTION

When k and s; are constants the functions (2.3) and (4.1) are identical with the solution found in [1]
by Maslov’s method [2].

The terms with plus and minus superscripts in (4.1) will be called the n*th and n"th wave packets,
respectively. An analysis of (2.3) and (4.1) shows that | W, | = O(g"™) outside the neighbourhoods of
the generating lines ¢ = ¢,(¢) when  and ¢ are fixed. This means that the initial wave packet (1.3) splits
into 2N packets for ¢ > 0, the n*th and n"th packets moving in opposite directions to the generatrix ¢
= 0 with group velocities v}, =g, (¢). The width of the packets is of order €//Im b}(r).

The behaviour of the wave packets depends strongly on k(¢), s;,(¢). In (3.2) we introduce the symbol
8 = M(@a)k*(gn)- Let us consider the following cases.

1. g, (9) < 0 for 0 =< ¢ < ¢,. From an analysis of (3.5) we find that for any ¢ > 0 we have

pr>0, vy >0, UY >0, if af=g,(0)
Py <0, v, >0, v, >0, if 0<a}<g,(0)
The latter shows that one of the n*th packets moves in the direction of decreasing g,,(¢) with increasing
group velocity.
2.8, (@) >0forO0<op=<g. LetH, > (4K,,)"*, where K,, = sup g,(¢) on the set 0 < @ < ¢,. Here

Py <0, vy >0, v¥ <0 when af = g,(0)
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n >0, v >0, v, <0 when 0<ag<g,(0)

In this case one of the n*th packets moves in the direction of increasing values of g,(¢), but its group
velocity decreases.
Now let

H, < (4K .1)
Here for a§ > g,(0) at? > 0 exists such that

w <0, vy >0, vy <0 for O<r<t;

vye=0 for r=1] 5.2)

r

+
r

+ <0, v, e <0, vy <0 for >t

If 0 < af < g,(0), then there is £; > 0 such that relations similar to (5.2) hold when the plus superscript is
rcplaced by a minus and the mequahty for P, is reversed. Thus, if (5.1) is satisfied, one of the
n*th packets is reflected from a certain generatrix ¢*,, = g5(t), which can be determined from the equation

H, =4\, (@)K ()4

Finally, when af = 3, (0), subject to condition (5.1), it is impossible for both n*th packets to move in
the direction of increasing g,(¢).
3. The case when the “weakest” [8] generatrix ¢ = 0, for which g,(0) = 0, g7(0) > 0, exists on the
shell surface is of particular interest. The following forms of free vibrations with the lowest frequency
= HY% + €y/2 are localized in a neighbourhood of this generatrix

W =z explie™' [0}t + py @ + 156,07 ) (5.3)

where n is the number of half-wavelengths along the generatrix. Here x = [Hp,Hg, - (H';,)z]m.

The superscript w indicates that the values of H, and its derivatives are taken for p = p%, = g},/s(O) and
q = ¢’ = 0 (on the “weakest” generatrix). Note that p’, g%, b’ can be found from Eqs (3.5) and (3.7),

respectlvely, in which one must take p,, . b, to be identically equal to zero.

Ifag# pj, and (5.1) is satisfied, then the n *th packets undergo oscillatory motion about the “weakest”
generatrix, bemg repeatedly reflected from the line ¢ = O

Now let ay = p’. Then from (3.5) we obtain p, = p%, g, = 0 for any ¢ = 0, which demonstrates that
no splitting of the initial nth packet (2.4) occurs. If by # b, then b,(t) is a function of time, and if by
= b%, we obtain b, = b’ for any ¢ = 0. In the latter case the nth package undergoes motions identical,
apart from amplitude, with the characteristic form (5.3) of shell vibrations.

Therefore the presence of the “weakest” generatrix can lead to the localization of wave forms of shell
motion in the neighbourhood of this generatrix.

6. EXAMPLE
We consider a joint-supported circular cylindrical shell with a sloping edge. Let

k= l, 5= 0, = Sz((P) = lo +thCOS(p
Wy = wogsin(rns/ 1), Vg =v,gsin(ras/l)

where B is the angle of inclination of the edge, n is a natural number, and ly, wjg, vy are constants.
Then A,(¢) = (n/l)4 and 2,(s, ¢) = sin(rns/l). In the case in question the initial wave packet is
concentrated on the “weakest” generatrix ¢ = 0 of length [ + tgP Computatlons have been camed
out forh/R = 4x 102,y = 1, R S0cm,v=03,E=624x10"k (cms) p = 1.18 x 107 kg/em®,
ay=2,by=3,n=1, B 30°%whg = 1,vpp = 0. Inequalltles (5.1) hold and a§ > g,(0) for the parameter
values under consideration.
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In Fig. 1 the functions pi(t), g1(¢), J1(?) = Im b1(t), vi(t), @(r) are marked by the numbers 1-5.
For comparison, the dashed lines 1a-5a show the same functions for a shell with a straight edge s; =
Iy + tg 30°. Curves 1-5 indicate that the behaviour of the 1*th packet is entirely consistent with the
qualitative analysis of the solution obtained earlier: first the packet moves in the direction of decreasing
generatrix length, then it spreads out, and then it is reflected from the generatrix ¢}, = 1.45 at time ¢
= 0.51, followed by focusing.

The wave pattern over the section s = I(¢)/2 of the shell surface is shown in Fig. 2. The numbers (-2
indicate the waves at t = 0,¢ = 0.4 (before the packet is reflected), and ¢ = 0.75 (at the time of focusing
after reflection), respectively. The dashed line 2a represents the solution at ¢ = 0.75 for a shell with a
straight edge s, = Iy + tg 30°. It can be seen that the presence of a sloping edge increases the amplitude
of the reflected wave.

The error of the method proposed here depends very much on the relations between the input
parameters of the problem. In particular, if the shell has a sloping edge, the error increases as the angle
of inclination B increases and/or the number by decreases. This is because the solution (2.3), (4.1) satisfies
the boundary conditions on the s{?zping edge precisely only on the generating lines ¢ = ¢(f) and
approximately with accuracy O(e“) away from them. The inaccuracy in satisfying the boundary
conditions on the sloping edge leads to an accumulation of errors as the wave amplitude is computed
(see (3.9)) for large t.
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