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The initial-boundary-value problem for the equations of shallow shells describing the motion of a non-circular cylindrical shell 
is considered. The shell edges are given by not necessarily plane curves. The conditions of a joint support or a rigid damp are 
considered as boundary conditions. It is assumed that the initial displacements and velocities of the points of the median surface 
of the shell are functions which decrease rapidly away from some generatrix. In the ease when the shell edges lie in planes 
perpendicular to the l;eneratrix, the solution of the problem can be constructed as an expansion in beam functions 
along the generatrix. The expansion enables the original initial boundary-value problem to be reduced to an initial problem, 
the solution of which can be constructed [11 by Maslov's method [2]. A complex WKB procedure is proposed, which is suitable 
for non-circular cylimtdcal shells with sloping edges. An asymptotic solution of the equations of motion is constructed 
by superimposing localized families (wave packets) of flexural waves travelling in a circular direction. A qualitative analysis of 
the solutions is carried c,ut. As an example wave forms of motion of a cylindrical shell of oblique section are considered. Copyright 

1996 Elsevier Science Ltd. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

On the median smiace of a shell of thickness h we introduce an orthogonal system of coordinates s, O, 
where s is the long;itudinal coordinate and O is a coordinate on the directrix chosen in such a way that 
do ~ = R2(ds 2 + d02) is the first quadratic form of the surface. The radius of curvature is R2 = R/k(0). 
Here R is a characteristic dimension of the median surface. Suppose that the shell is bounded by two 
edges and is not necessarily dosed in the direction of • 

st(O) -< s <- s2(o), Ot -< q~ -< ¢2 

The functions k(q 0 and si(o) are assumed to be infinitely differentiable, with 3ink~30 'n, iO'nsi/3q¢ " - 1 as 
e---* 0 (m = 1,2 . . . .  ). 

Assuming that the waves vary rapidly with respect to the circular coordinate O, we use the following 
system of equations [3] written in dimensionless form 

¢4A2W+ k(0) ~_~_+ ~2 32W - - ~ t  2 = 0 ,  

32 32 h 2 
A= ~--~'+~o-~' ~s = t = - -  

12R2(l-v2)  ' 
/ 

W=e4W., F = e ~  Fo 1.2=~-6 RZP 
R hE' E 

4 2 g2W_ 
F-k(q,) 0 

t. 
T. 

(1.1) 

where W. is the normal deflection, F. is the stress function, t. is the time, p is the density of the material, 
0 < ~ is a natural small parameter, E and v are Young's modulus and Poisson's ratio, and T. is the 
characteristic time. 

On the shell eeLges s = sl(o),  s = s2(o) we consider one of two groups of boundary conditions, namely, 
the joint suppov: group or the rigid clamp group. Each of these groups includes six versions of the 
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boundary conditions [4, 5]. The stress state of  the shell consists of the basic stress state and the edge- 
effect integrals [6]. To study the basic stress state on each edge one only needs to satisfy two basic 
conditions. Apart from terms of order E 2 these conditions have the form [4] 

W = O2WIOs 2 = O, W = ~WlOs = 0 (1.2) 

for the joint support and rigid clamp groups, respectively. 
Consider the initial conditions 

Wt,= ° W j ( s ,  to, e)Oo ' #1,= ° • - t .  = =,E  Vo(s ,~,~)eOo 

• 0 = O0(to, e) = exp(ie-*(a0to+ Y2b0to2)}, Imb 0 > 0 

(1.3) 

where ao(ao ~ O) is a real number and W~, V~ are complex-valued functions such that 

3mW o 13s m, 3mV o I 3s"  - e. - ' ' t  when e --¢ 0 (1.4) 

r e = l , 2  .... ; 0 ~ < ) ' < 3 / 4 ;  0~<ot~<J6 

having a finite number of oscillations with variability of order e -a in the direction of to. Conditions (1.3) 
specify an initial wave packet on the shell surface with variability of order e -1 in the direction of to localized 
in the neighbourhood of the generatrix ~o = 0. 

Consider the equation 

2. M E T H O D  OF S O L U T I O N  

d4zlds 4 - ~.z = 0 (2.1) 

We will denote by zl(s, to), z2(s, tO),.., an infinite system of eigenfunctions of the boundary-value problem 
(1.2), (2.1). Suppose that W~, V~ satisfy one version of the boundary conditions (1.2). Then for any 
to ~ [to1, 02], W~ and V~ can be expanded in terms of the eigenfunctionszn(s, tO) into uniformly convergent 
series in the section [tol, ~ ]  [7] 

s2(~) 
Wo= ~, W,o(to.~)z,(s.to ), W,0= I V  e~z,ds (2.2) 

.--i  xt(~) 

sl0P) 

vj='2 V.o(to.Oz.(,.to). V.o= l 
n=l sl (ql) 

Taking (1.4) and (2.2) into account, in practical computations i t i s  possible to restrict oneself to 
a finite number N - e-s of terms. Let W,o, Vno be polynomials of  e-"*to whose coefficients are regular 
functions of e. This assumption involves the presence of a finite number of oscillations in the amplitude 
of the initial wave packet [2]. Then Who, I/,0 can be represented by the series 

w.0= `2 v.0= '2 (;); 
m---0 m=0 

where won,, v ° are polynomials of degree M,~ with (in general) complex coefficients. We take the Taylor 
expansion of  zn 

0 ~ Er l2 ;  r r 0 r 0 
Zn = 2 ,  + ~ r  ' 2 ,  = = 

,=t  to" I,=0 

Following [1] and taking into account that the original system is linear, we shall seek a solution of 
problem (1.1)-(1.3), (2.2) in the form 
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N N 
W = E  W,,, F = E  F, (2.3) 

n = l  n = l  

where IV., Fn (n = 1, 2 . . . . .  N) are the required functions, which at time t are localized in the neigh- 
bourhood of a generatrix q~ = q.(t) and satisfy the initial conditions 

W.I,= 0 = ~. e-m'2w,•z.°. W.l,=0 = ic - '  ~. e-'tz0-v,.mZ. (2.4) 
m=0 m=0 

where the functions z. = zn(s, q~) are represented by the above Taylor series. 
The pair W., F .  will be called the nth wave packet with centre at q~ = qn(t). Here qn(t) is a twice 

differentiable function such that 

q.(0) = 0 (2.5) 

In (1.1) we change to a new system of coordinates connected with centre qn(t) using the formula 

9 = q, (t) + e'~F,~ (2.6) 

As a result, we obtain the system of equations 

~2 ~4Wn - 3 ~4Wtl 4 ~4Wn - O2 Fn 2 ~2Wn --  3 1 2 "  ~2Wn • 

+~#2 02Wn E3/2,- ~Wn 
" ~ n  - qn "~n"n = 0 

2 = o 

(2.7) 

describing the behaviour of the nth wave packet. 
We shall seek a solution of (2.7) with initial conditions (2.4) in the form 

w, = w : o , ,  F, = (2.8) 

m = O  m = O  

O,. = exp ~-'~ o~.(x)dx+~-)~p.(t)~. + l  bn(t)~2 . 
o 2 

where to., p. .  b.  ;are twice differentiable with respect to t, Im b.(t) > 0 for any t > 0, and Wnm. f, . .  
are polynomials in ~ .  Here o~.(t) is the instantaneous frequency of shell vibrations in the 
neighbourhood of the centre q~ = q.(t), p.(t) determines the variability in the direction of ~, and 
bn(t) characterizes the rate of decay of the wave amplitude as the distance from the centre tp = q,.(t) 
increases. 

Note that when q.  = 0 and co., Pn, bn are constants, expansions of the form (2.8) were constructed 
[8. 9] for the equations governing the stability and characteristic vibrations of shells. 

We substitute (2.8) into (2.7) and expand k(9 ) in a Taylor series in powers of eltz~, in the neighbour- 
hood of the stationary point ~o = q.(t). Equating the coefficients of like powers of e 1/2 to zero and 
eliminatingf,~,., we obtain the sequence of differential equations 

m 

~. Lnjwn,,,_ j = O, m = O, 1,2 .... (2.9) 
j=O 

from which to determine to., q.. p . .  bn, wnm. Here 
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k2[qn(t)] i) 4 
LnO= p4ft) Os4+lP4n(t)-[tOn(t)-i?n(t)P. (t)]2} 

O 
L. l = (b.Lp + Lq + pnL~)~. - iLp 0~. 

L. 2 l (b2Lpp +2b.L~ +Lqq .2 = + p,,/.,~ + 21ha/-, m + 2,bnbn/~ + b,/-~)~ 2 + 

b 2 b b 
+ano ~ n  +anl ~-'~'n ~n +an2 ~)t + an3 

- £  Z = -i(bnLpp + Lpq + pnL~), ano -" 2 PP ' anl a,2 = -iL~ 

4kk" 2 4 1 

(2.10) 

The subscripts p,  q, to in (2.10) and below denote differentiation with respect to the corresponding 
variables. 

The functions fnm are found one after another from the inhomogeneous equations and can be 
expressed in terms off,,0,f,1 . . . . .  f,,m-1. In particular, f,,0 = k(q,)P~i92(VnO/os2. 

Substituting (2.8) into (1.2) we obtain a sequence of  boundary conditions for w,~ with s = si[q~(t)]. 
For example, in the ease of  a joint support we obtain 

W.o =0,  02w"° = 0  (2.11) 
Os 2 

~2Wnl ~ , ~ 3 W n O  w., +~,.:-~=o, a-7~+~.s -57=0 (2.12) 

. . .aw. , .  ~.2[ ..a2w.~ +..2a3Woo]=o 
w.=+~.s--~s +~-~.[s as as 

~ s  " " " ~)3 w"' " 1 . 2 r  , ,  t)3wno . ,2 O4 Wno ] ,, 

(2.13) 

3. I N T E G R A T I O N  OF E Q U A T I O N S  (2.9)  

Consider the boundary-value problem (2.9), (2.11) which arises in the null approximation (m = 0). 
We shall seek its solution in the form 

W.o = ~o (~., t)z. Is, q,, (t)] (3.1) 

where P,,0(~, t) is a polynomial of  argument ~ .  Substituting (3.1) into (2.9) for m = 0 we obtain 

ton (t) = il. (t)p. (t) T. H. [p. (t), q. (t)] 

H. (p., q.) = [p~ + k. (q.)k 2 (q.)p~ ]~J (3.2) 

where Hn(P., q.) is the Hamilton function and kn[qn(t)] is an eigenvalue of the boundary-value problem 
(2.1), (2.11) for s = si[qn(t)]. 

In the first approximation (m = 1) we have the boundary-value problem (2.9), (2.12) for Why We 
shall seek a solution of the latter in the form 
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Wn I = Pnl(~n,t)Zn[S, qn(t)] + w(~)(S,~n,t) (3.3) 

where Pnl is a polynomial of  argument ~ and w~l ) is a partial solution of (2.9) for m = 1. The equality 

z, ( l~ow, i + LnlP~oz, )ds = 0 (3.4) 
st 

serves as a condition for the existence of wnl. It is a differential equation in Pn~ For the latter to have 
a solution in the folm of a polynomial of  argument ~ it is necessary that pn(t), qn(t) should satisfy 
identically the Hamilton system 

qn = Hp, Pn = -Hq ( 3 . 5 )  

0,) Letp~(t), q,(t) be a solution of (3.5) with initial conditionsp,(0) = a0, q~(0) = 0. Then w,a = ~,,P,0zq, 
where z7 = ~zn/~/,. In this approximation the polynomials/'no, P,a remain undefined. 

Considered (2.9) for m = 2 with boundary conditions (2.13). Takiqg (3.2) and (3.5) into account, the 
condition for a solution of this problem to exist leads to the equation 

( ~ D  b - 2D~)PA0 = 0  (3.6) 

for/'no. Here 

Db = b, +np ,  b 2 + 2 n m b  n + Hqq 

• 0 2 . .  0 . ~ , 
D~ = ano ~ + an l qn "~n + an 2 "~t + an 3 

a~o(t )=~Hpp,  a*nl(t)=i(bnHpp+Heq), a*n2=i 

a~3 (t) - iq:  I (2H n )-I [ H, Hppb. - 6). - 2 HpHq - 4)~ n (q,)k(q, )k'(q, )p~5 + #,Pn + 

st s! 

For (3.6) to have a solution in the form of a polynomial it is necessary that b~(t) be a solution of  the 
Riccati equation 

b. + + 2n ,b. + n . ,  =o  (3.7) 

Let bn(t) be a s~lution of (3.7) that satisfies the initial condition bn(0) = b0. It can be proved 
[10, p. 104] that if lm b0 > 0, then 0 < Im b~(t) < +** in any finite interval 0 < t < T. 

Using (3.7), Eq. (3.6) takes the form D~tP~o = 0. Any polynomial 

M 
(3.8) 

kffi0 

of degree M with coefficients 

a , ~ ( t )  = d,o~l ' ,o  (t) ,  A,,M-I ( t )  = d,,:l ' , ,  l ( t )  

r a~O(t)AnM-r+2(t) 
] 

A~c_,(t) = ~P~,(t)|dn, - (M - r +  2)(M - r +  1)[ dt|  
L " a~2(t)tFnr(t) J 

~P ¢ , ~ - e . n :  f (M-j)a*~|( t)+a~,( t)  A,~ 
n i x - , ,  - -  - - " r ~ - - J  .... . ~ 

[ an2(t) J 

r = 2 , 3  ..... M; j = O ,  1 ..... M 

(3.9) 
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is a solution of this equation. Here d~ are arbitrary complex numbers, which can be determined from 
the initial conditions of the problem. 

The function I4:, = [Wno + o(el/2)]~ found from the first three approximations is the leading term 
in the asymptotic e xllansion of the solution (2.8) and satisfies the original boundary conditions (1.2) 
apart from terms O(e/2). To determine the correction tg'/2w,~, in (2.8) for m ~> 1 one must consider the 
corresponding boundary-value problem in the (m + 2)nd approximation. The existence of a solution 
of the latter leads to the inhomogeneous differential equation D~tPnm = P* for the polynomial P,~(~,  
t). Note that the above procedure for constructing the polynomials w ~  is no longer valid for m t> 4 
because the correction introduced by the boundary-value problem into the general solution (2.8) at 
the sixth step is of order O(e 2) at the shell edges, which is the same as the error of the original boundary 
conditions (1.2). 

4. DETERMINATION OF THE CONSTANTS dni 

Taking (3.2) into account, we denote by p~, q~, c0~, b,  ~, z~, P~, w~ the positive and negative 
branches of the functions found above, corresponding to the Hamiltonians Hn and -1t,. Here z~ = 
zn[s, q~n(t)]. Let ~ ,  = E-1/2[cp - q~(/)]. Then P~0 are polynomials of argument ~ containing the 
undetermined constants a~. We consider the functions 

W, = W: + Wn- , F _-F++& - (4.1) 

+o(P )I¢5 e: =t/5 
where the plus and minus superscripts indicate that the computations are carried out for the positive 
and negative branches, respectively. By the above construction, functions (4.1) satisfy Eqs (2.7) in the 
leading approximation. To determine the constants d~ appearing in 14:, and F,, we substitute (4.1) into 
. . . . . .  4 -  " ° 4 -  0 " mmal condmons (2.4) and use the equahty ~ = ~ and the ldentay z~ - z,, whmh hold at t = 0. As a 
result, we obtain the system of equations 

e:,,.0 i fw° -- iL " ° " '  ---fir-0 j , o  __ , .(a0.0) (4.2) 

from which to determine d~. From (4.2) it follows that the polynomials P~0 have degree M = M,0. 

5. ANALYSIS OF THE SOLUTION 

When k and si are constants the functions (2.3) and (4.1) are identical with the solution found in [1] 
by Maslov's method [2]. 

The terms with plus and minus superscripts in (4.1) will be called the n+th and n-th wave packets, 
respectively. An analysis of (2.3) and (4.1) shows that I IV, I = O(e ')  outside the neighbourhoods of 
the generating lines q~ = q~(t) when n and t are fixed. This means that the initial wave packet (1.3) splits 

+ 

into 2N packets for t > 0, the n th and n-th packets moving in opposite directions to the generatrix ¢p 
= 0 with group velocities v~g =q~(t). The width of the packets is of order e~/2/Im b~(t). 

The behaviour of the wave packets depends strongly on k(9), si(cP). In (3.2) we introduce the symbol 
g~ = g,,(q~)k2(q,). Let us consider the following cases. 

1. g',, (¢p) < 0 for 0 ~ cp ~< ~ .  From an analysis of (3.5) we find that for any t > 0 we have 

4- " 4 -  /~2>0, u ~ > 0 ,  u ,~>0,  if a~>>-gn(O) 

/,;<0, u.-,>0, a.-~>0, if 0<a~<g.(0) 

The latter shows that one of the n-+th packets moves in the direction of decreasinggn(cp ) with increasing 
group velocity. 

2. ~ (q~) > 0 for 0 ~ ¢p ~< ~ .  Let H~, > (4Kn) 1/4, where K, = sup g,(~0) on the set 0 ~< ¢p ~< ~ .  Here 

4- p~+<O, v.g>O, v+~#<O whenaoS~>g.(O) 
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/~ > 0, u ~-s > 0, d~-~ < 0 when 0 < a~ < gn (0) 

In this case one of the n+th packets moves in the direction of increasing values of g~(to), but its group 
velocity decreases. 

Now let 

H~ ~< (4K.y ~ (5.1) 

Here for aS > g~(0) a t +, > 0 exists such that 

4- 
+ >0,  "+ <0  for O < t < t  r /,." < 0, u, ,  z o ,  t 

+ =0 for t=t + (5.2) O n& 

+ 

"+ + "+ <0  for t > t  r Pn <0,  I/ng <0,  Ong 

If 0 < aS < gn(0), then there is f, > 0 such that relations similar to (5.2) hold when the plus superscript is 
replaced by a minus and the inequality for p;, is reversed. Thus, if (5.1) is satisfied, one of the 

4- • • • 4-  ~ 4- • • • 
n-th  packets ts reflected from a certain generatnx to-,~ = q~(t,), which can be determined from the equation 

H~, = 14k.(to)k2(to)] ¼ 

Finally, when aS = ~h (0), subject to condition (5.1), it is impossible for both n-+th packets to move in 
the direction of increasing gn(to). 

3. The case when the "weakest" [8] generatrix to = 0, for which g~(0) = 0, ~(0)  > 0, exists on the 
shell surface is of particular interest. The following forms of free vibrations with the lowest frequency 

w w o)~ = H~ + eg/2 are localized in a neighbourhood of this generatrix 

o exp{i~:-I [ea~'t + p~to + ~ b~to 2 ]} W = z n  (5.3) 

where n is the number of half-wavelengths along the generatrix. Here ~ = [/-/~pt,/-/~ - (/-~)21~. 

The superscript w indicates that the values of Hn and its derivatives are taken for p = p~ = g~/S(0) and 

q = q~ = 0 (on the ''weakest" generatrix). Note thatp~, q~, b~ can be found from Eqs (3.5) and (327), 

respectively, in which one must take pn, qn, b,, to be identically equal to zero. 
If a0 ;e p~ and (5.1) is satisfied, then the n +-th packets undergo oscillatory motion about the ''weakest" 

generatrix, being repeatedly reflected from the line to = to~  
Now let a0 = p~. Then from (3.5) we obtain p ,  - w - Pn, q~ = 0 for any t I> 0, which demonstrates that 

no splitting of the initial nth packet (2.4) occurs. If b0 ¢ b~,, then b~(t) is a function of time, and if b0 
= b~, we obtain bn = b~ for any t I> 0. In the latter case the nth package undergoes motions identical, 
apart from amplitude, with the characteristic form (5.3) of shell vibrations. 

Therefore the pr ~sence of the "weakest" generatrix can lead to the localization of wave forms of shell 
motion in the neighbourhood of this generatrix. 

6. E X A M P L E  

We consider a joint-supported circular cylindrical shell with a sloping edge. Let 

k=l ,  sl =O, l=s2(9)=lo +tg~cos 9 
• , o 

W~ = Wnosin(r~ns / l), V d =U nosin(nns/ l ) 

where I~ is the angJe of inclination of the edge, n is a natural number, and 10, w~,0, v~0 are constants. 
Then L,,(to) = (~/1)4 and zn(s, to) = sin(gns/l). In the case in question the initial wave packet is 
concentrated on the "weakest" generatrix 9 = 0 of length l0 + tgB. Computations have been carried 

3 7 1  2 3 3 out for h/R = 4 x 10-, l0 = 1, R = 50 cm, v = 0.3, E = 6.24 x 10- kg/(cm s ), O = 1.18 x 10- kg/cm, 
a0 = 2, b0 = 3, n = 1, I~ = 30°, w~,0 = 1, v°0 = 0. Inequalities (5.1) hold and a~ > gl(0) for the parameter 
values under consideration. 
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In  Fig. 1 the functionsp l(t), ql(t), J~l(t) = Im bz(t), v ~(t), to 1(0 are marked by the numbers 1-5. 

For comparison, the dashed lines la-Sa show the same functions for a shell with a straight edge s2 = 
l0 + tg 30 °. Curves 1-5 indicate that the behaviour of the l+th packet is entirely consistent with the 
qualitative analysis of the solution obtained earlier: first the packet moves in the direction of decreasing 
generatrix length, then it spreads out, and then it is reflected from the generatrix q)~r = 1.45 at time t 
= 0.51, followed by focusing. 

The wave pattern over the section s = l(cp)/2 of the shell surface is shown in Fig. 2. The numbers 0-2 
indicate the waves at t = 0, t = 0.4 (before the packet is reflected), and t = 0.75 (at the time of  focusing 
after reflection), respectively. The dashed line 2a represents the solution at t = 0.75 for a shell with a 
straight edge s2 = l0 + tg 30L It can be seen that the presence of a sloping edge increases the amplitude 
of  the reflected wave. 

The error of  the method proposed here depends very much on the relations between the input 
parameters of  the problem. In particular, if the shell has a sloping edge, the error increases as the angle 
of inclination 13 increases and/or the number b0 decreases. This is because the solution (2.3), (4.1) satisfies 
the boundary conditions on the sloping edge precisely only on the generating lines ¢ = q~(t) and 
approximately with accuracy O(e '~) away from them. The inaccuracy in satisfying the boundary 
conditions on the sloping edge leads to an accumulation of  errors as the wave amplitude is computed 
(see (3.9)) for large t. 
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